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SUMMARY

The flow flelds at the propeller planes of six L40° sweptback semi-
span wing-fuselage-nacelle combinations were surveyed to provide data
to enable the study of the characteristics of the flow fields and their
effect on propeller-oscillating aerodynamic loads. The results of the
surveys are presented in the form of angles that define the direction of
the local velocity relative to the survey disk and as the ratios of the
local velocities to free-stream velocity. These parameters are shown as
functions of the angular position around the survey disk for given radial
positions. Typical propeller-osclllating air loads, computed by the
method of NACA TN 2192 using measured flow-field datsas, are presented to
demonstrate the signifilcance of the flow parameters. Also shown are
comparisons of measured and predicted upflow angles for all models at a
specific angle of attack.

The results of the surveys show that variaticns of the flow param-
eters with angular position are predominantly first-order sinusoldal
for the six models tested and, thus, are similar to results for an

unswept-wing airplane reported in NACA TN 2192.

The rotational flow angle is the major contributor to the oscil-~
lating serodynamic loads and has its maximum and minimum values at the
horizontal center line of the propeller disk, where its value is
determined by the upflow anglte.

The upflow angles predicted by the methods of NACA TNt!s 2795 and
2894 were found to be in good egreement with measured angles.

INTRODUCTION

Vibratory stresses are introduced in propeller blades by oscillating
aerodynamic loads which result from rotation of the propeller (inclined
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or noninclined) in a nonuniform flow field! (see ref. 1). A detailed
study of the air flow at the propeller planes of a twin-engine silrplane
with an unswept wing was reported in reference 2, and it was demonstrated
therein that the upflow angle (sum of upwash and geometric angles) at

the horizontal center line of the propeller disk wes the major contrib-
utor to the propeller-oscillating serodynamic loads. A method for
predicting the upwash components of the total upflow angles at the
horizontal center line of propeller disks for airplanes with unswept
wings is presented in reference 3, and experimental verification is

gliven therein.

The method of reference 3 was extended in references 4 and 5 for
gpplication to ailrplanes having wings of arbitrary plan form with
nacelles &t arbiltrary vertical locations. Limited experimental upflow
data which substantiate the method for the swept-wing case are presented
in reference 5 for several nacelle locatlons.

More complete experimental data for the case of the swept-wing
alrplane gre needed to determine the significance of the flow-field
parameters which determine the oscillating aerodynemic loads and, also,
the extent to which these loads are dependent on the upflow angles at
the horilzontal center lines of the propeller disks. Presented hereln
are the results of detailed flow measurements at the propeller planes of
six 4o° sweptback, semispan wing-fuselage-nacelle combinatlions which
differ 1n aspect ratio, taper ratio, and nacelle location and inclina-
tion. Typical oscillating alr loads, computed by the method of refer-
ence 2 using measured flow-fleld data, are presented in order to
demonstrate the significance of the flow-fileld paresmeters. In addition,
the measured and predicted upflow angles together with the predicted
upwash components are presented for each model.

NOTATION

A total upflow angle, angle between the propeller thrust axis
and the direction of the local flow, Gy + €, deg

b span of wing measgured perpendicular to the vertical plene of
symmetry, ft
1, 1ift coefficient, total 1ift
as
c local chord of the wing at the inboard nacelle,? ft

lOscillating alr loads may also be introduced by rotating a propeller
5 inclined in & uniform flow field.
Measured in a plane parallel to the model plane of symmetry.
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section thrust

cy section thrust coefficilent, 7
pnzD

Act incremental section thrust coeffilclent, ctQ - ctﬂ -0

D propeller diameter, ft

L body length, £t

M free-stream Mach number

n propeller speed, rps

o] free-stream dynemic pressure,fDVOZ/Q, lb/sq £t

T distance along any radial line from propeller thrust axis, £t

S wing area, sq ft

) free-stream velocity, ft/sec

V3 local velocity at any point (r, Q) at the survey disk, ft/sec
(Direction of this velocity is defined by the angles © and
¥« See fig. 1.)

VZ/VO veloclty ratio at any point (r, Q) at the survey disk

v component of the local velocity in the plane perpendicular
to a radial line, ft/sec

¥ distance from model plane of symmetry, £t

e angle between the propeller thrust axis and the direction of
free-stream velocity,? deg
(See £ig. 1.)

vy angle between wing-root chord and direction of free stream, 2
deg

4 propeller thrust-axis inclination as measured from the wing-
root chord (negetive below wing-chord line),Z deg

€ angle of upwash® measured from the free-stream dlrection, deg

l dimensionless lateral coordinate, semlspans

e angle of outflow, measured from a line parallel to the propel-
ler thrust axis in a plane through the propeller thrust axis,
deg

(see fig. 1.)

®See footnote 2, p. 2.
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e angle at which the local velocity at any point on the survey
disk is inclined to the plane perpendicular to the radial
line through that polnt, deg
(See fig. 1.)

A gsweep of the wing quarter-chord line, positive for sweepback,
deg
A wing teper ratio, tip chord
root chord
0 mass density of alr in free stream, slugs/cu t
T dimensionless longitudinal coordinate, distance shead of wing

quarter-chord line,? semispans

v angle of rotational flow (an apparent, not an actual rotation),
measured from & line parallel to the propeller thrust axis
in & plane perpendicular to & radial line, deg
(See fig. 1.)

f angular position gbout the propeller thrust axis, measured
counterclockwise from the upper vertical positlon as seen
from the front, deg
(see fig. 1.)

MODELS AND APPARATUS

The six semispan-model, 40® sweptback wing-fuselage-nacelle combi-
natlons used in this investigation are shown In figure 2, together with
pertinent Informstion concerning each. The model designations indicated
in figure 2 are used throughout this report. It may be noted that the
most lmportant differences between models are the chordwise and vertical
locations and inclination of the longitudinal axis of the nacelles.3
Photographs of models B, D, and E mounted in the Ames Lo- by 80-foot
wind tunnel are shown in figure 3. The various model configurations
have been made by modification of a baslc model, the general arrange-
ment and pertinent dimensions of which are shown in figure L. The
fuselage and nacelle coordinates are shown in figure 5.

The survey rake consisted of six directlional pitot-static tubes
mounted at various intervaels along a steel tube. Detalls of the survey
rake are shown in figure 6. The rake 1s shown mounted on the models in
figure 3.

:See footnote 2, p. 2. '
The propeller thrust axes were assumed to be coincident with the nacelle
longitudinal axes.

S
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TEST CONDITIONS

The flow-field measurements and force tests were made in the Ames
Lo~ by 80-foot wind tunnel at the following test conditioms:

Dynamic pressure 25 1b/sq ft
Mech number 0.13
Reynolds number (based on wing

M.A.C.)

Models A and B 5,500,000
Models C, Dy E, and F 5,800,000
Angle-of-attack range -40 to 12°

RESULTS

The propeller flow field is best deseribed by the variation of the
flow parameters V¥, 6, and Vz/Vo with anguler position { around the
disk for various radial distances r from the propeller axis. Since
the loed on a propeller blade at a given angular position is related to
the flow parameters at that angular positlon, the variation of the flow
parameters with angular position characterizes tThe oscillating alr load.

Typical variations of the flow parameters with angular position are
presented in the followlng figures for all models:

Radisl station,

Figure Flow parameter Ty £t
7 Rotational flow angle, ¥ -4,0,4,8,12 3.89,2.56,1.23
8 Outflow angle, 0 -4,0,4,8,12  3.89,2.56,1.23
9 Velocity ratio, Vy/V, -4,0,4,8,12  3.89,2.56,1.23

Figures 10, 11, and 12 show the varistion of the flow parameters
with radial position along several dlameters of the survey disk of the
inboard nacelle of model B. These variations are typical of each model,
and i1t is evident that the values at the radial stations 3.89, 2.56, and
1.23 adequately define these curves; therefore, cross plots of figures
7, 8, and 9 could be used for attaining the radial variation of the flow
parameters for all models, if desired.

Flgure 13 shows typical oscillating air loads for a propeller-blade
element operating in the flow flelds of several of the sweptback wing-
fuselage-nacelle combinations. For each of the combinations, a compar-
ison is shown of the oscillating air load computed using the complete

flow-fleld data with that computed using only the rotational flow angles
and assuming that

Vi/Vo cos 6t =1
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(This is tentemount to assuming V,/V, =1 and 6 = 0° for all Q's.)
The method of reference 2 was used for these computations.

Measufed and predicted upflow angles for all models are shown in
figure 1k, The predicted upwash angles shown in figure 14 (computed
by the methods of refs. 4 and 5) are presented to facllitate the
discussion of the effects of nacelle location and inclination.

Lift curves of the slx models are shown in figure 15 for all models.

No corrections have been gpplied to the flow measurements or the
1ift curve, since the Ames 40- by 80-foot wind-tunnel-waell corrections
are negligible for g semlspan model of this size.

DISCUSSION

Propeller Flow Filelds

From exsminetion of figures 7, 8, and 9, 1t is seen that the varia~
tion of the flow peremeters, ¥, 6, and Vz/Vo; with angular position are
predominantly first-order sinusoldal. The outflow angle and velocity
ratlo are approximately in phase with each other and 90° out of phase
with the rotational flow angle. These characteristics are simllar to
those found for the unswept-wing alrplane as reported in reference 2.
For all models, the meximum end minimum values of V¥ occur when Q is
epproximately equal to 90° end 270°. These values of ( establish the
horizontal center line of the propeller disk for which

Ygoo = ~(ag + €g00) = =Agoo

Vo700 = +(ay + €2700) = +Az700
Oscillatling Aerodynamic Loading

The oscillating air loads, as indicated by the variation of the
thrust coefficient?® with angular position (shown in fig. 13), were
computed by use of the entire flow-field data and by use of only the
measured rotational flow angle, V. Also shown in figure 13 are the
flow-field parameters used in the computations. Comparison of the load-
ings shows that V¥ 1s the major contributor to the oscillating air load.
For each model the magnitudes of the variations are not greatly different
for the two cases; hence, the magnitude of the oscillating asir load due
to the complete flow field can be estimated with good accuracy if the

maximum and minimum velues of V¥ are known.
4These thrust coefficients were computed by the method of reference 2.
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On the basis of all the foregolng, the total upflow angles at the
horizontal center 1line of the propeller disk provide a rationsl basis
for comparison of the models with respect To the magnitude of the
oscillating air load.

The Upflow Angles gt the Horizontel Center Lines
of the Propeller Disks

The measured and predicted upflow angles are shown in figure 14.
A wing angle of attack of 10° was chosen for the comperisons as repre-
gsentative of a climbing attitude where the magnitude of the propeller
vibratory stresses would be large. At this angle of attack, all models
have approximstely the same 1ift coefficlent (see fig. 15). When com-
paring the models, it is lmportant to consider both the level and
asymmetry of the upflow. A high level of upflow is indicative of a
large first-order component of the oscillating air load; the asymmetry
of the upflow distribution is primserily associsted with higher-order
components of the oscillating air loads. The predicted upwash components
will be used in explaining the differences in the upflow for the models
because, as may be seen in figure 1k, the agreement between the measured
and predicted upflow angles was of the same order at various points
along the horizontal center line of the propeller disks and for the
different nacelle locations at a given angle of attack.

The effect of chordwise location of the propeller disks i1s shown
in the upflow and upwash variations of models A and B (fig. 14). Model
4, which has its nacelles (hence, propeller disks) farthest forward, has
a somewhat lower level and & lesser smount of asymmetry of upflow than
model B. However, these reductions are insignificant in that there
would be no sizable differences in the oscillating alr load of propel-
lers located within the limits of the chordwise positions investigated.

The effects of spanwise location of the propeller disks (as asso-
ciated with swept-wing airplanes) are apparent in the upflow and upwash
varlations of models A, B, ¢, and D. The magnitude and asymmetry of the
upflow are somewhat greater at the outboard survey disks than at the
inboard survey disk. Comparison of upflow and upwash characteristics
at the inboard survey disk of model C with those at the survey disk of
model D (model D has only an inboard nacelle) shows that the outboard
nacelle of model C induces no significant upwash at the inboard survey
disk.

The effect of vertical locatlon of the nacelles is shown in the
upflow and upwash characteristics of models D, E, and F (fig. 1L4). The
pylon-mounted nacelles of models E and F have 1little or no asymmetry of
upflow and a lower level of upflow than model D. These reductions are
significant in that they indicate a sizable change in the oscillating
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alr load may be realized from changes in the vertical position of the
horizontal center line of a propeller disk.

The effect of nacelle and thrust-axis inclination is shown in the
upflow and upwash characteristics of model F which has considerably less
nacelle-induced upwash than all other models. Although only a slight
reduction in total upwash resulted from tilting the nacelle downward,
the large reduction in the thrust-axis inclination considerably reduced
the magnitude of the upflow angles. Since the rate of change of the
upflow angle with angle of attack, dA/da, is independent of thrust-axis
inclination,® 7, minimum upflow angles at the horizontal center line of
a propeller disk can only occur at a given angle of attack. A methed
1s presented in Appendix B of reference 4 for selection of thrust- and
nacelle-axis Inclination for minimizing oscilllsting air loads.

CONCLUSIONS

From the results of surveys of the propeller flow filelds of six
L4oO sweptback, semispan wing~fuselage-nacelle combinations, the follow-
ing conclusions may be drawn:

l. Varlations of the flow parameters with angular position are
predominantly first-order sinusoidal for the six models tested and,
thus, similar to results for an unswept-wing airplane reported 1n NACA
T 2192,

2. The rotational flow angle is the major contributor to the
osclllating aercdynemic loads and has its maximum and minimum values
at the horizontal center line of the propeller disk, where its value is
determined by the thrust-axls angle of attack and the total upwash angle.

3. From the upflow characteristics of the models tested, 1t was
found that significant reductions in the upflow angles were obtained by
lowering the horizontal center line of the propeller disk.

4. The upflow angles predicted by the methods of NACA TN's 2795
and 2894 were found to be in good agreement with measured angles.

Ames Aeronsutical Leboratory
National Advisory Committee for Aeronautics
Moffett Fleld, Calif., Mar. 31, 1953

—

5If & change in the position of the horizontel center line of the pro-
peller disk results from inclination of the thrust axis, dA/da may
be altered.
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Free sfream

Figure 1l.- Geometric characteristics of the flow parameters relative
to the survey disk. All angles are shown positive.
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(a) Model B.

Figure 3.- The models mounted in the %0- by 80-foot wind tunnel.
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(b) Model D.

Figure 3.~ Contilnued.
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(c¢) Model E.

Figure 3.- Concluded.
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All dimensions are in feét

NACA TN 2857
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NACA

Figure 4.— General arrangements and dimensions of test models.
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Figure 4.— Concluded.
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All dimensions are in feet

/ l

(a) Radial distribution of tubes.
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0 0 o

O

L

Figure 6.— Details of the survey rake.
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